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The Separation of Particle Size and Strain by the Method of the Variance 
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The broadening of the powder pattern peaks from cold-worked and annealed SAP-aluminum filings 
is measured by three techniques, namely Fourier analysis, integral breadth and variance. It is dem- 
onstrated that when the proper angular range of integration is chosen, the variance, Fourier analysis 
and the integral breadth will yield values of particle size and strain that are of the same order of 
magnitude. 

Introduction 

Though the variance or mean square breadth is a 
frequent measure of mathematical distributions, its use 
has been limited in the field of X-ray diffraction. The 
applicability of the variance to the analysis of the line 
broadening of Debye-Scherrer powder pattern peaks 
has been clearly demonstrated by Wilson (1962a, b, c; 
1963a, b). Wilson (1963b) has shown that if the line 
broadening is due both to small spherically shaped 
crystallites and to strains within these crystallites, then 
the variance in 20 coordinates is given by 

K~A(20) 
W(20) = 292p cos 0 + 4 tan z 0(e 2) (1) 

where p is the cube root of the particle volume, K is 
a shape factor, 2 is the wavelength used, A20 is the 
angular range over which the intensity is measured, 0 
is the Bragg angle, and (e2) is the mean-square strain. 
The effective particle size, De, is defined by the ratio 
p/K. The particle size and strain contributions to the 
variance can be separated by using multiple orders of 
reflexions as has been done previously for integral 
breadth measurements by Williamson & Hall (1953) 
and for the Fourier analysis method by Warren & 
Averbach (1950). In a study of the line broadening 
from deformed tungsten filings, Halder & Mitra (1963) 
found that the particle size and strain determined by 
the variance technique were equal to those observed 
earlier by McKeehan & Warren (1953) using the 
Fourier analysis method. However, another study by 
Mitra (1964) on cold-drawn and annealed aluminum 
contained considerable inconsistencies between the par- 
ticle sizes and strains as determined separately by both 
the variance and the Fourier analysis methods. Al- 
though Mitra (1964) was apparently aware that the 
variance is 'extremely dependent upon the choice of 
the range over which the variance has been determined' 
no details are given of the experimental procedures or 
of the precautions taken in selecting the proper value 
of the range. Mitra (1964) shows further that the par- 
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ticle size and strain computed from the variance are 
closely approximated by those obtained from the linear 
method of integral breadths due to Williamson & Hall 
(1953). In this linear method, the true breadth is the 
simple sum of the strain breadth and the particle size 
breadth. The method assumes a Cauchy strain distribu- 
tion, which, as Warren (1959) has demonstrated, is a 
physically non-realistic one. Another integral breadth 
relationship that has been shown to satisfy the require- 
ments of physical reality in both theory (Warren, 1959) 
and practice (Wagner & Aqua, 1964) is a quadratic 
one. In the quadratic method, where the strain distrib- 
ution is Gaussian, the true breadth squared is the sum 
of the strain breadth squared and the particle size 
breadth squared. 

The purpose of this paper is to demonstrate that the 
particle size and strain computed from the variance 
analysis are consistent with the respective values cal- 
culated by the Fourier analysis method as well as by 
the quadratic integral breadth technique. In an earlier 
study by Wagner & Aqua (1964), it was demonstrated 
that the particle sizes and strains measured by the 
Fourier analysis were consistent with those computed 
from the integral breadth measurements. From the 
agreement of the results obtained by these two methods, 
it was concluded that the angular range over which 
the peak shape had been determined was properly 
chosen. Therefore, this range should also be the correct 
one for use in the variance analysis. 

Experimental 

For this investigation the 111,200, 220, 311,222, 400, 
331, and 420 reflexions from cold-worked and annealed 
SAP-aluminum filings were recorded with a GE XRD-5 
focusing diffractometer using Cu Ke radiation (nickel 
filtered). All of the diffraction peaks were corrected by 
the method of Rachinger (1948) to resolve the peak 
profile of the Kcq peak. This procedure assumes that 
the K~2 peak is the same shape as the Kcq. Experiment- 
ally, one finds that the Ke2 component is somewhat 
broader than the Kcq and that both profiles are asym- 
metrical with respect to the peak maximum, having 
longer tails on the low-angle side Cqdilson, 1964). In 
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practice, these discrepancies are small and will be 
masked by the contributions of the geometrical aber- 
rations to the instrumental broadening (Keating, 1959). 
The powder pattern peaks from the annealed filings 
were used for the instrumental broadening correction 
by each method, i.e. by the Stokes (1948) method for 
the Fourier analysis, by the parabolic-approximation 
method (Wagner & Aqua, 1964; Rao & Anantharam- 
an, 1963) for the integral-breadth method, and by the 
additivity property of the variance (Wilson, 1963b). 
The Fourier coefficients, integral breadth and variance 
calculations for each powder pattern peak were made 
with the aid of an IBM 709 computer (Aqua, 1964). 

In the Fourier-analysis method, the particle size and 
strain are separated by the Warren & Averbach (1950) 
method, using multiple orders of the hkl reflexion ac- 
cording to the following relationship: 

In AL= In A ~ -  2~2L2(Ez >(h 2 + k 2 + 12)/a 2 (2) 
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Fig. 1. (a) Stokes corrected, Fourier coefficients AL as a func- 
tion of the order of reflexion ho 2 = h2 + k2 + 12 for selected 
values of the distance L. (b) Strain-free particle size coef- 
ficients AL P as a function of the distance L. 

where Az are the Fourier coefficients corrected for in- 
strumental broadening by the Stokes (1948) method, 
ALP are the strain-free particle size coefficients, a is the 
lattice parameter, (e~) is the mean-square strain com- 
ponent in the direction normal to the reflecting planes, 
and L is a distance normal to the reflecting planes. 
Shown in Fig. l(a) are the AL for deformed aluminum 
filings plotted as a function of the order of reflexion, 
h 2 + k2+ l 2. The effective particle size De(hkl) is defined 
in terms of the Fourier coefficients as 

dA~ I - 1 
dL , L = o De(hkl) (3) 

or as the intercept on the L axis of the initial slope of 
the Af.(L) curve, as shown in Fig. l(b). 

It was observed that both the strain and the particle 
size are independent of crystallographic orientation, 
i.e. that they are both isotropic. The isotropic particle 
size and a representative value of the root-mean-square 
strain are listed in Table 1. 

Table 1. Particle size and strain as computed by the 
variance analysis, Fourier analysis and 

integral-breadth technique 

Fourier Integral- 
Quantity Variance analysis breadth 
Particle 

size, A 500 + 50 400 + 40 650 + 65 
Strain 0.0022 0"0007 0.0010 

When one uses the integral breadth as a measure of 
the peak profile, the particle size and strain contribu- 
tions to the true integral breadth (corrected for in- 
strumental broadening) can be separated by using the 
following equation 

(b cos O/2)2= l/D~ +16 eE (sin O/2) 2 (4) 

where b is the true integral breadth; Dz is the integral- 
breadth particle size; and e is the integral-breadth 
strain. The graph of equation (4) is shown in Fig.2. 
The particle size and strain computed from the integral 
breadth measurements are listed in Table 1. The meas- 
urement of the particle size and strains in deformed 
aluminum filings by the Fourier analysis and integral 
breadth techniques has been previously reported by 
Wagner & Aqua (1964). 

In order to separate the contributions to the true 
variance (corrected for instrumental broadening) from 
the lattice strains and small particle size, one uses a 
more appropriate rearrangement of the terms in 
equation (1), namely 

/4I(20) cos 0 1 4 sin0 tan 0 
A(20) ~ -  2zcz-----De + 2A(20) (eZ>" (5) 

The plot of equation (5) is shown in Fig. 3. Listed in 
Table 2 are the values of the variance for the deformed 
and annealed filings and the angular range over which 
they are determined. The particle size and strain com- 
puted from the variance analysis are listed in Table 1. 
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Table 2. Variance analys~ data 
Variance (°20)2 Range 

hkl 20 Annealed Deformed (°20) 
111 38.36 0.0046 0.0188 1.28 
200 44.63 0.00537 0.0250 1.44 
220 65.03 0.00513 0.0355 1.76 
311 78.16 0.00575 0.0429 1.76 
222 82-38 0.01295 0.0466 2.00 
400 99.00 0-00920 0.1409 3.00 
311 111.95 0.00992 0-1193 3.00 
420 116.51 0.01322 0-1385 3-24 

Discussion 

From an examination of Table 1, it is apparent that 
the particle sizes and strains computed by the three 
methods of line broadening analysis, namely the vari- 
ance analysis, Fourier analysis and the integral-breadth 
method, are of the same order of magnitude. The limits 
of accuracy indicated for the particle sizes represent 
the reproducibility of the peak profile determination. 
The particle sizes obtained by the Fourier analysis and 
variance analysis are smaller than that determined by 
the integral-breadth method. This result is in agree- 
ment with the different definitions of the 'apparent 
particle size' in each case. In the integral-breadth 
method, the apparent particle size is directly pro- 
portional to the cube root of the particle volume; the 
proportionality factor describes the shape of the par- 
ticle. In the Fourier analysis and variance methods, the 
apparent or effective particle size is the thickness of 
the particle in the direction normal to the (hkl) reflect- 
ing plane. Since 

<D3>l/3>_O (6) 
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Fig. 2. True integral breadth as a function of  (sin 0/2)2 for eight 
reflexions, 111-420. 

the integral breadth particle size will be greater than 
or equal to the particle size as determined by the 
Fourier analysis or variance. When the particle size 
values are only slightly different, one can conclude that 
the distribution of particle sizes about the mean value 
D is rather sharp. 

The lattice strains obtained by each of the three 
methods differ in a manner consistent with their re- 
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spective definitions. In the Fourier analysis, the lattice 
strain is a function of the distance L in the crystal. 
The Fourier analysis strain listed in Table 1 represents 
the root-mean-squared strain averaged over the di- 
mension of the effective particle size, a value independent 
of L. The variance strain, also independent of L, is 
observed to have the magnitude of the Fourier analysis 
strain at L -+ 0, and would be consistently larger than 
the average Fourier-analysis strain. The integral- 
breadth strain has been shown (Wagner & Aqua, 1964) 
to be approximately 25~o larger than the Fourier an- 
alysis root-mean-squared strain as averaged over the 
particle size dimension. 

Another measure of the lattice strain may be ob- 
tained from the variation of the variance with the 
range. The value of the range A20 over which the peak 
profile is defined is critical. As Langford & Wilson 
(1963) have demonstrated, the variance of the peak is 
properly chosen when the ratio W(20)/A(20) is a con- 
stant. To ascertain whether the range used for the 
Fourier analysis and integral breadth also satisfied the 
requirements for the variance analysis, the dependence 
of the variance as the range was investigated. One ex- 
ample is shown in Fig.4 for the 111 reflexion. One 
notes that points A and B, the values used for the 
particle size and strain determination, are certainly in 
the region of constant slope. Using the difference in 
the intercept values of Wo for deformed and annealed 
powders, one can compute the root-mean-square strain 
(see Langford & Wilson, 1963) using the following 
equation: 

e=½(Wo) ~ cot 0.  (7) 

For the (111) reflexion the strain ~ = 1.4 x 10 -3, a value 
that agrees with those computed by the other methods. 

In summary, one sees that when the proper angular 
range is chosen the variance, Fourier analysis and in- 

tegral breadth will each yield values of particle size 
and strains that are mutually consistent. 

The author is grateful to Prof. C. N. J. Wagner for his 
most helpful discussions during the experimental phase 
of this work completed at Yale University. 
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Structure Cristalline Pr6eise du S616nite de Magnesium ~ Six Mol6eules d'Eau 
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(Refu le 5 ]uillet 1965) 

The crystal structure of magnesium selenite hexahydrate, MgSeO3.6HaO, has been determined and 
refined, with the use of three-dimensional Fo and (Fo-Fo) Fourier and least-squares methods. The 
space group is R3. The dimensions of the hexagonal unit-cell are: a=  b= 8.944 /~, c=8.936/~. The 
structure is built from octahedral [Mg(H20)6] a+ and pyramidal [SeO3]/- ions; the distance Se-O is 
1.69 A, and the interbond angle O-Se-O is 100 ° 4l'. 

Introduction 

En 1950 est parue une ~tude cristallographique sur le 
s616nite de magn6sium h six mol6cules d'eau montrant  
que ce compos6 6tait vraisemblablement isotype du sul- 

rite de nickel h six mol6cules d'eau (Cavalca & Ferrari, 
1950). Afin de compl6ter ces travaux et d'obtenir des 
donn6es pr6cises sur l'ion s616nite, la d&ermination de 
la structure cristalline de MgSeO3.6HzO a 6t6 entre- 
prise. 


